Consistent Pseudo-Maximum Likelihood Estimators and Groups of Transformations
نویسندگان
چکیده
منابع مشابه
The Convergence of Lossy Maximum Likelihood Estimators
Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.
متن کاملAsymptotic Distributions of Quasi-Maximum Likelihood Estimators
Asymptotic properties of MLEs and QMLEs of mixed regressive, spatial autoregressive models are investigated. The stochastic rates of convergence of the MLE and QMLE for such models may be less than the √ n-rate under some circumstances even though its limiting distribution is asymptotically normal. When spatially varying regressors are relevant, the MLE and QMLE of the mixed regressive, autoreg...
متن کاملConsistent Confidence Intervals for Maximum Pseudolikelihood Estimators
Maximum pseudolikelihood estimation (MPLE) constitutes a computationally efficient and easily implemented alternative to maximum likelihood and simulationbased methods. The MPLE has been shown to be consistent and asymptotically normally distributed in a number of interesting cases. However, the coverage probability of the conventional confidence interval for the MPLE is biased downward. We pro...
متن کاملCommon Voting Rules as Maximum Likelihood Estimators
Voting is a very general method of preference aggregation. A voting rule takes as input every voter’s vote (typically, a ranking of the alternatives), and produces as output either just the winning alternative or a ranking of the alternatives. One potential view of voting is the following. There exists a “correct” outcome (winner/ranking), and each voter’s vote corresponds to a noisy perception...
متن کاملMaximum Likelihood Estimators in Magnetic Resonance Imaging
Images of the MRI signal intensity are normally constructed by taking the magnitude of the complex-valued data. This results in a biased estimate of the true signal intensity. We consider this as a problem of parameter estimation with a nuisance parameter. Using several standard techniques for this type of problem, we derive a variety of estimators for the MRI signal, some previously published ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometrica
سال: 2019
ISSN: 0012-9682
DOI: 10.3982/ecta14727